Chapter 10: Problem 24
Find the curvature \(K\) of the curve, where \(s\) is the arc length parameter. Curve in Exercise 20: \(\mathbf{r}(t)=\left\langle 4(\sin t-t \cos t), 4(\cos t+t \sin t), \frac{3}{2} t^{2}\right\rangle\)
Chapter 10: Problem 24
Find the curvature \(K\) of the curve, where \(s\) is the arc length parameter. Curve in Exercise 20: \(\mathbf{r}(t)=\left\langle 4(\sin t-t \cos t), 4(\cos t+t \sin t), \frac{3}{2} t^{2}\right\rangle\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the indefinite integral. $$ \int\left(\frac{1}{t} \mathbf{i}+\mathbf{j}-t^{3 / 2} \mathbf{k}\right) d t $$
Find (a) \(\quad D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)] \quad\) and (b) \(D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]\) by differentiating the product, then applying the properties of Theorem 10.2. $$ \mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, \quad \mathbf{u}(t)=\mathbf{j}+t \mathbf{k} $$
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta+\sin \theta) \mathbf{i}+(1-\cos \theta) \mathbf{j} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=\langle 4 t, 3 \cos t, 3 \sin t\rangle $$
Use the model for projectile motion, assuming there is no air resistance. Rogers Centre in Toronto, Ontario has a center field fence that is 10 feet high and 400 feet from home plate. A ball is hit 3 feet above the ground and leaves the bat at a speed of 100 miles per hour. (a) The ball leaves the bat at an angle of \(\theta=\theta_{0}\) with the horizontal. Write the vector-valued function for the path of the ball. (b) Use a graphing utility to graph the vector-valued function for \(\theta_{0}=10^{\circ}, \theta_{0}=15^{\circ}, \theta_{0}=20^{\circ},\) and \(\theta_{0}=25^{\circ} .\) Use the graphs to approximate the minimum angle required for the hit to be a home run. (c) Determine analytically the minimum angle required for the hit to be a home run.
What do you think about this solution?
We value your feedback to improve our textbook solutions.