Chapter 10: Problem 23
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\langle\cos t+t \sin t, \sin t-t \cos t, t\rangle $$
Chapter 10: Problem 23
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\langle\cos t+t \sin t, \sin t-t \cos t, t\rangle $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn your own words, explain the difference between the velocity of an object and its speed.
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j},(1,1) $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\frac{1}{2} t^{2} \mathbf{i}-t \mathbf{j}+\frac{1}{6} t^{3} \mathbf{k} $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=8 \cos t \mathbf{i}+3 \sin t \mathbf{j} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j},(3,0) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.