Chapter 10: Problem 22
Find the principal unit normal vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=\sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}, \quad t=0 $$
Chapter 10: Problem 22
Find the principal unit normal vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=\sqrt{2} t \mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}, \quad t=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is known about the speed of an object if the angle between the velocity and acceleration vectors is (a) acute and (b) obtuse?
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ \begin{array}{l} D_{t}\\{\mathbf{r}(t) \cdot[\mathbf{u}(t) \times \mathbf{v}(t)]\\}=\mathbf{r}^{\prime}(t) \cdot[\mathbf{u}(t) \times \mathbf{v}(t)]+ \\ \mathbf{r}(t) \cdot\left[\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)\right]+\mathbf{r}(t) \cdot\left[\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)\right] \end{array} $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\left\langle e^{-t}, t^{2}, \tan t\right\rangle $$
Use the given acceleration function to find the velocity and position vectors. Then find the position at time \(t=2\) $$ \begin{array}{l} \mathbf{a}(t)=-\cos t \mathbf{i}-\sin t \mathbf{j} \\ \mathbf{v}(0)=\mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\mathbf{i} \end{array} $$
True or False? In Exercises 67-70, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If a particle moves along a sphere centered at the origin, then its derivative vector is always tangent to the sphere.
What do you think about this solution?
We value your feedback to improve our textbook solutions.