Chapter 10: Problem 22
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=t \mathbf{i}+(2 t+3) \mathbf{j}+(3 t-5) \mathbf{k} $$
Chapter 10: Problem 22
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=t \mathbf{i}+(2 t+3) \mathbf{j}+(3 t-5) \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t) $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, e^{t}\right\rangle $$
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(t)=\frac{1}{t-1} \mathbf{i}+3 t \mathbf{j} $$
Consider the vector-valued function \(\mathbf{r}(t)=\left(e^{t} \sin t\right) \mathbf{i}+\left(e^{t} \cos t\right) \mathbf{j}\). Show that \(\mathbf{r}(t)\) and \(\mathbf{r}^{\prime \prime}(t)\) are always perpendicular to each other.
Find the indefinite integral. $$ \int\left(\frac{1}{t} \mathbf{i}+\mathbf{j}-t^{3 / 2} \mathbf{k}\right) d t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.