Chapter 10: Problem 21
Find the principal unit normal vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}, \quad t=\frac{\pi}{4} $$
Chapter 10: Problem 21
Find the principal unit normal vector to the curve at the specified value of the parameter. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}, \quad t=\frac{\pi}{4} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the vectors \(\mathrm{T}\) and \(\mathrm{N},\) and the unit binormal vector \(\mathbf{B}=\mathbf{T} \times \mathbf{N},\) for the vector-valued function \(\mathbf{r}(t)\) at the given value of \(t\). $$ \mathbf{r}(t)=2 e^{t} \mathbf{i}+e^{t} \cos t \mathbf{j}+e^{t} \sin t \mathbf{k}, \quad t_{0}=0 $$
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. $$ D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t) $$
Find the vectors \(\mathrm{T}\) and \(\mathrm{N},\) and the unit binormal vector \(\mathbf{B}=\mathbf{T} \times \mathbf{N},\) for the vector-valued function \(\mathbf{r}(t)\) at the given value of \(t\). $$ \mathbf{r}(t)=\mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k}, \quad t_{0}=\frac{\pi}{4} $$
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\left\langle e^{-t}, t^{2}, \tan t\right\rangle $$
Consider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ $$ \text { Find the velocity vector and show that it is orthogonal to } \mathbf{r}(t) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.