Chapter 10: Problem 17
In Exercises \(17-24,\) find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=t^{3} \mathbf{i}+\frac{1}{2} t^{2} \mathbf{j} $$
Chapter 10: Problem 17
In Exercises \(17-24,\) find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=t^{3} \mathbf{i}+\frac{1}{2} t^{2} \mathbf{j} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeA projectile is launched with an initial velocity of 100 feet per second at a height of 5 feet and at an angle of \(30^{\circ}\) with the horizontal. (a) Determine the vector-valued function for the path of the projectile. (b) Use a graphing utility to graph the path and approximate the maximum height and range of the projectile. (c) Find \(\mathbf{v}(t),\|\mathbf{v}(t)\|,\) and \(\mathbf{a}(t)\) (d) Use a graphing utility to complete the table. $$ \begin{array}{|l|l|l|l|l|l|l|} \hline \boldsymbol{t} & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline \text { Speed } & & & & & & \\ \hline \end{array} $$ (e) Use a graphing utility to graph the scalar functions \(a_{\mathbf{T}}\) and \(a_{\mathrm{N}} .\) How is the speed of the projectile changing when \(a_{\mathrm{T}}\) and \(a_{\mathbf{N}}\) have opposite signs?
Consider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the velocity and acceleration vectors of the particle. Use the results to determine the times at which the speed of the particle will be (a) zero and (b) maximized.
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If a car's speedometer is constant, then the car cannot be accelerating.
Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i} $$
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { The velocity vector points in the direction of motion. } $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.