Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle\arcsin t, \arccos t, 0\rangle $$

Short Answer

Expert verified
The derivative vector \(\mathbf{r}^{\prime}(t)\) is \(\langle\frac{1}{\sqrt{1-t^2}}, -\frac{1}{\sqrt{1-t^2}}, 0\rangle\).

Step by step solution

01

Differentiate the first component

The derivative of the first component of the vector (which is \(\arcsin t\)) is obtained by the derivative of \(\arcsin t\) with respect to \(t\), which is \( \frac{1}{\sqrt{1-t^2}}\).
02

Differentiate the second component

Next, differentiate the second component of the vector (which is \(\arccos t\)) with respect to \(t\). The derivative of \(\arccos t\) with respect to \(t\) is \(-\frac{1}{\sqrt{1-t^2}}\).
03

Differentiate the third component

Finally, differentiate the third component, which is a constant (0). The derivative of a constant is always 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. Prove that the vector \(\mathbf{T}^{\prime}(t)\) is \(\mathbf{0}\) for an object moving in a straight line.

Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\frac{1}{2} t^{2} \mathbf{i}-t \mathbf{j}+\frac{1}{6} t^{3} \mathbf{k} $$

The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j},(\sqrt{2}, \sqrt{2}) $$

Find \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=t e^{-t^{2}} \mathbf{i}-e^{-t} \mathbf{j}+\mathbf{k}, \quad \mathbf{r}(0)=\frac{1}{2} \mathbf{i}-\mathbf{j}+\mathbf{k} $$

A projectile is launched with an initial velocity of 100 feet per second at a height of 5 feet and at an angle of \(30^{\circ}\) with the horizontal. (a) Determine the vector-valued function for the path of the projectile. (b) Use a graphing utility to graph the path and approximate the maximum height and range of the projectile. (c) Find \(\mathbf{v}(t),\|\mathbf{v}(t)\|,\) and \(\mathbf{a}(t)\) (d) Use a graphing utility to complete the table. $$ \begin{array}{|l|l|l|l|l|l|l|} \hline \boldsymbol{t} & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 \\ \hline \text { Speed } & & & & & & \\ \hline \end{array} $$ (e) Use a graphing utility to graph the scalar functions \(a_{\mathbf{T}}\) and \(a_{\mathrm{N}} .\) How is the speed of the projectile changing when \(a_{\mathrm{T}}\) and \(a_{\mathbf{N}}\) have opposite signs?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free