Chapter 10: Problem 15
Find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle t \sin t, t \cos t, t\rangle $$
Chapter 10: Problem 15
Find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle t \sin t, t \cos t, t\rangle $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=(6-t) \mathbf{i}+t \mathbf{j},(3,3) $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j},(3,0) $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. A particle moves along a path modeled by \(\mathbf{r}(t)=\cosh (b t) \mathbf{i}+\sinh (b t) \mathbf{j}\) where \(b\) is a positive constant. (a) Show that the path of the particle is a hyperbola. (b) Show that \(\mathbf{a}(t)=b^{2} \mathbf{r}(t)\)
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. If \(\mathbf{r}(t) \cdot \mathbf{r}(t)\) is a constant, then \(\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0\)
Use the model for projectile motion, assuming there is no air resistance. Rogers Centre in Toronto, Ontario has a center field fence that is 10 feet high and 400 feet from home plate. A ball is hit 3 feet above the ground and leaves the bat at a speed of 100 miles per hour. (a) The ball leaves the bat at an angle of \(\theta=\theta_{0}\) with the horizontal. Write the vector-valued function for the path of the ball. (b) Use a graphing utility to graph the vector-valued function for \(\theta_{0}=10^{\circ}, \theta_{0}=15^{\circ}, \theta_{0}=20^{\circ},\) and \(\theta_{0}=25^{\circ} .\) Use the graphs to approximate the minimum angle required for the hit to be a home run. (c) Determine analytically the minimum angle required for the hit to be a home run.
What do you think about this solution?
We value your feedback to improve our textbook solutions.