Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(\mathbf{r}^{\prime}(t)\). $$ \mathbf{r}(t)=\langle t \sin t, t \cos t, t\rangle $$

Short Answer

Expert verified
The derivative \(\mathbf{r}'(t)\) of the given vector function \(\mathbf{r}(t)\) is \(\langle \sin(t) + t\cos(t), \cos(t) - t\sin(t), 1 \rangle\).

Step by step solution

01

Identify the components

First, we identify the functions that form the vector \(\mathbf{r}(t)\). These are \(t \sin(t)\), \(t \cos(t)\), and \(t\). Each of these will be differentiated separately.
02

Differentiate each component

Taking the derivative for each component: \[(t \sin(t))'\] using product rule is \(\sin(t) + t\cos(t)\), \[(t \cos(t))'\] using product rule is \(\cos(t) - t\sin(t)\), and \[(t)'\] is \(1\).
03

Combine the derivatives

Finally, we combine these all together to form the derivative of the vector function \(\mathbf{r}(t)\), i.e., \(\mathbf{r}'(t) = \langle \sin(t) + t\cos(t), \cos(t) - t\sin(t), 1 \rangle\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=(6-t) \mathbf{i}+t \mathbf{j},(3,3) $$

The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=3 \cos t \mathbf{i}+2 \sin t \mathbf{j},(3,0) $$

Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. A particle moves along a path modeled by \(\mathbf{r}(t)=\cosh (b t) \mathbf{i}+\sinh (b t) \mathbf{j}\) where \(b\) is a positive constant. (a) Show that the path of the particle is a hyperbola. (b) Show that \(\mathbf{a}(t)=b^{2} \mathbf{r}(t)\)

Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. If \(\mathbf{r}(t) \cdot \mathbf{r}(t)\) is a constant, then \(\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0\)

Use the model for projectile motion, assuming there is no air resistance. Rogers Centre in Toronto, Ontario has a center field fence that is 10 feet high and 400 feet from home plate. A ball is hit 3 feet above the ground and leaves the bat at a speed of 100 miles per hour. (a) The ball leaves the bat at an angle of \(\theta=\theta_{0}\) with the horizontal. Write the vector-valued function for the path of the ball. (b) Use a graphing utility to graph the vector-valued function for \(\theta_{0}=10^{\circ}, \theta_{0}=15^{\circ}, \theta_{0}=20^{\circ},\) and \(\theta_{0}=25^{\circ} .\) Use the graphs to approximate the minimum angle required for the hit to be a home run. (c) Determine analytically the minimum angle required for the hit to be a home run.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free