Chapter 10: Problem 14
Sketch the curve represented by the vectorvalued function and give the orientation of the curve. \(\mathbf{r}(t)=(1-t) \mathbf{i}+\sqrt{t} \mathbf{j}\)
Chapter 10: Problem 14
Sketch the curve represented by the vectorvalued function and give the orientation of the curve. \(\mathbf{r}(t)=(1-t) \mathbf{i}+\sqrt{t} \mathbf{j}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the motion of a point (or particle) on the circumference of a rolling circle. As the circle rolls, it generates the cycloid \(\mathbf{r}(t)=b(\omega t-\sin \omega t) \mathbf{i}+b(1-\cos \omega t) \mathbf{j}\) where \(\omega\) is the constant angular velocity of the circle and \(b\) is the radius of the circle. Find the velocity and acceleration vectors of the particle. Use the results to determine the times at which the speed of the particle will be (a) zero and (b) maximized.
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=4 t \mathbf{i}+4 t \mathbf{j}+2 t \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+(2 t-5) \mathbf{j}+3 t \mathbf{k} $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=\left\langle e^{-t}, e^{t}\right\rangle,(1,1) $$
Prove the property. In each case, assume that \(\mathbf{r}, \mathbf{u},\) and \(\mathbf{v}\) are differentiable vector-valued functions of \(t,\) \(f\) is a differentiable real-valued function of \(t,\) and \(c\) is a scalar. If \(\mathbf{r}(t) \cdot \mathbf{r}(t)\) is a constant, then \(\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.