Chapter 10: Problem 11
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\frac{t^{2}}{2} \mathbf{k} $$
Chapter 10: Problem 11
The position vector \(r\) describes the path of an object moving in space. Find the velocity, speed, and acceleration of the object. $$ \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\frac{t^{2}}{2} \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\mathbf{r}(t)\) for the given conditions. $$ \mathbf{r}^{\prime}(t)=\frac{1}{1+t^{2}} \mathbf{i}+\frac{1}{t^{2}} \mathbf{j}+\frac{1}{t} \mathbf{k}, \quad \mathbf{r}(1)=2 \mathbf{i} $$
In Exercises \(49-52,\) evaluate the definite integral. $$ \int_{0}^{1}(8 t \mathbf{i}+t \mathbf{j}-\mathbf{k}) d t $$
The position vector \(r\) describes the path of an object moving in the \(x y\) -plane. Sketch a graph of the path and sketch the velocity and acceleration vectors at the given point. $$ \mathbf{r}(t)=2 \cos t \mathbf{i}+2 \sin t \mathbf{j},(\sqrt{2}, \sqrt{2}) $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. Prove that the principal unit normal vector \(\mathbf{N}\) points toward the concave side of a plane curve.
Consider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ Find the acceleration vector and show that its direction is always toward the center of the circle.
What do you think about this solution?
We value your feedback to improve our textbook solutions.