Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(\|r(t)\| .\) \(\mathbf{r}(t)=\sqrt{t} \mathbf{i}+3 t \mathbf{j}-4 t \mathbf{k}\)

Short Answer

Expert verified
The magnitude of the vector function is \( \|r(t)\| = \sqrt{t + 25t^{2}} \).

Step by step solution

01

Define the Vector Function Components

In this vector function, the components are \( \sqrt{t} \), \( 3t \), and \( -4t \) along the i, j, and k directions respectively.
02

Square Each Component

Now each of these components need to be squared: \( (\sqrt{t})^{2} = t, (3t)^{2} = 9t^{2}, \) and \( (-4t)^{2} = 16t^{2} \).
03

Sum of Squares

You need to sum up the squares of all these component: \( t + 9t^{2} + 16t^{2} = t + 25t^{2} \).
04

Calculate Square Root

Finally, the norm or magnitude of the vector function is the square root of this sum: \( \|r(t)\| = \sqrt{t + 25t^{2}} \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ Find the acceleration vector and show that its direction is always toward the center of the circle.

Use the model for projectile motion, assuming there is no air resistance. A bale ejector consists of two variable-speed belts at the end of a baler. Its purpose is to toss bales into a trailing wagon. In loading the back of a wagon, a bale must be thrown to a position 8 feet above and 16 feet behind the ejector. (a) Find the minimum initial speed of the bale and the corresponding angle at which it must be ejected from the baler. (b) The ejector has a fixed angle of \(45^{\circ} .\) Find the initial speed required for a bale to reach its target.

Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\langle\cos t+t \sin t, \sin t-t \cos t, t\rangle $$

In Exercises 39 and \(40,\) find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=3 \sin t \mathbf{i}+4 \cos t \mathbf{j} $$

Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta-2 \sin \theta) \mathbf{i}+(1-2 \cos \theta) \mathbf{j} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free