Chapter 10: Problem 10
Find \(\|r(t)\| .\) \(\mathbf{r}(t)=\sqrt{t} \mathbf{i}+3 t \mathbf{j}-4 t \mathbf{k}\)
Chapter 10: Problem 10
Find \(\|r(t)\| .\) \(\mathbf{r}(t)=\sqrt{t} \mathbf{i}+3 t \mathbf{j}-4 t \mathbf{k}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a particle moving on a circular path of radius \(b\) described by $$ \begin{aligned} &\mathbf{r}(t)=b \cos \omega t \mathbf{i}+b \sin \omega t \mathbf{j}\\\ &\text { where } \omega=d \theta / d t \text { is the constant angular velocity. } \end{aligned} $$ Find the acceleration vector and show that its direction is always toward the center of the circle.
Use the model for projectile motion, assuming there is no air resistance. A bale ejector consists of two variable-speed belts at the end of a baler. Its purpose is to toss bales into a trailing wagon. In loading the back of a wagon, a bale must be thrown to a position 8 feet above and 16 feet behind the ejector. (a) Find the minimum initial speed of the bale and the corresponding angle at which it must be ejected from the baler. (b) The ejector has a fixed angle of \(45^{\circ} .\) Find the initial speed required for a bale to reach its target.
Find \((a) r^{\prime \prime}(t)\) and \((b) r^{\prime}(t) \cdot r^{\prime \prime}(t)\). $$ \mathbf{r}(t)=\langle\cos t+t \sin t, \sin t-t \cos t, t\rangle $$
In Exercises 39 and \(40,\) find the angle \(\theta\) between \(r(t)\) and \(r^{\prime}(t)\) as a function of \(t .\) Use a graphing utility to graph \(\theta(t) .\) Use the graph to find any extrema of the function. Find any values of \(t\) at which the vectors are orthogonal. $$ \mathbf{r}(t)=3 \sin t \mathbf{i}+4 \cos t \mathbf{j} $$
Find the open interval(s) on which the curve given by the vector-valued function is smooth. $$ \mathbf{r}(\theta)=(\theta-2 \sin \theta) \mathbf{i}+(1-2 \cos \theta) \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.