Use the model for projectile motion, assuming there is no air resistance.
Use a graphing utility to graph the paths of a projectile for the given values
of \(\theta\) and \(v_{0} .\) For each case, use the graph to approximate the
maximum height and range of the projectile. (Assume that the projectile is
launched from ground level.)
(a) \(\theta=10^{\circ}, v_{0}=66 \mathrm{ft} / \mathrm{sec}\)
(b) \(\theta=10^{\circ}, v_{0}=146 \mathrm{ft} / \mathrm{sec}\)
(c) \(\theta=45^{\circ}, v_{0}=66 \mathrm{ft} / \mathrm{sec}\)
(d) \(\theta=45^{\circ}, v_{0}=146 \mathrm{ft} / \mathrm{sec}\)
(e) \(\theta=60^{\circ}, v_{0}=66 \mathrm{ft} / \mathrm{sec}\)
(f) \(\theta=60^{\circ}, v_{0}=146 \mathrm{ft} / \mathrm{sec}\)