Chapter 1: Problem 89
Let \(f(x)=\left(\sqrt{x+c^{2}}-c\right) / x, c>0 .\) What is the domain of \(f ?\) How can you define \(f\) at \(x=0\) in order for \(f\) to be continuous there?
Chapter 1: Problem 89
Let \(f(x)=\left(\sqrt{x+c^{2}}-c\right) / x, c>0 .\) What is the domain of \(f ?\) How can you define \(f\) at \(x=0\) in order for \(f\) to be continuous there?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow(\pi / 2)} \ln |\cos x| $$
$$ \lim _{x \rightarrow 2} f(x)=3, \text { where } f(x)=\left\\{\begin{array}{ll} 3, & x \leq 2 \\ 0, & x>2 \end{array}\right. $$
Write the expression in algebraic form. \(\sec (\arctan 4 x)\)
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ f(x)=x^{3}+3 x-2 & {[0,1]} \\ \end{array} $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If the inverse function of \(f\) exists, then the \(y\) -intercept of \(f\) is an \(x\) -intercept of \(f^{-1}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.