Chapter 1: Problem 81
Let \(R\) be the region consisting of the points \((x, y)\) of the Cartesian plane satisfying both \(|x|-|y| \leq 1\) and \(|y| \leq 1\). Sketch the region \(R\) and find its area.
Chapter 1: Problem 81
Let \(R\) be the region consisting of the points \((x, y)\) of the Cartesian plane satisfying both \(|x|-|y| \leq 1\) and \(|y| \leq 1\). Sketch the region \(R\) and find its area.
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the graph of the function. Use a graphing utility to verify your graph. $$ f(x)=\operatorname{arcsec} 2 x $$
(a) Prove that if \(\lim _{x \rightarrow c}|f(x)|=0,\) then \(\lim _{x \rightarrow c} f(x)=0\). (Note: This is the converse of Exercise \(74 .)\) (b) Prove that if \(\lim _{x \rightarrow c} f(x)=L,\) then \(\lim _{x \rightarrow c}|f(x)|=|L|\). [Hint: Use the inequality \(\|f(x)|-| L\| \leq|f(x)-L| .]\)
Prove that if \(\lim _{x \rightarrow c} f(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c,\) then \(\lim _{x \rightarrow c} f(x) g(x)=0\).
Determine conditions on the constants \(a, b,\) and \(c\) such that the graph of \(f(x)=\frac{a x+b}{c x-a}\) is symmetric about the line \(y=x\).
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \arcsin ^{2} x+\arccos ^{2} x=1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.