Chapter 1: Problem 77
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \lim _{x \rightarrow 0} \frac{|x|}{x}=1 $$
Chapter 1: Problem 77
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \lim _{x \rightarrow 0} \frac{|x|}{x}=1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 1 / 2} x \sec \pi x $$
Prove that if \(\lim _{x \rightarrow c} f(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c,\) then \(\lim _{x \rightarrow c} f(x) g(x)=0\).
Write the expression in algebraic form. \(\cos (\operatorname{arccot} x)\)
Solve the equation for \(x\). $$ \arcsin \sqrt{2 x}=\arccos \sqrt{x} $$
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{3}-x^{2}+x-2, \quad[0,3], \quad f(c)=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.