Chapter 1: Problem 75
Prove that \(\ln (x / y)=\ln x-\ln y, \quad x>0, y>0\).
Chapter 1: Problem 75
Prove that \(\ln (x / y)=\ln x-\ln y, \quad x>0, y>0\).
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Let \(f_{1}(x)\) and \(f_{2}(x)\) be continuous on the closed interval \([a,
b]\). If \(f_{1}(a)
Average Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip. the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour. (a) Verify that \(y=\frac{25 x}{x-25}\) What is the domain? (b) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 30 & 40 & 50 & 60 \\ \hline\(y\) & & & & \\ \hline \end{tabular} Are the values of \(y\) different than you expected? Explain. (c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\) and interpret its meaning.
After an object falls for \(t\) seconds, the speed \(S\) (in feet per second) of the object is recorded in the table. $$ \begin{array}{|l|c|c|c|c|c|c|c|} \hline t & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\ \hline S & 0 & 48.2 & 53.5 & 55.2 & 55.9 & 56.2 & 56.3 \\ \hline \end{array} $$ (a) Create a line graph of the data. (b) Does there appear to be a limiting speed of the object? If there is a limiting speed, identify a possible cause.
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(\lim _{x \rightarrow c} f(x)=L\) and \(f(c)=L,\) then \(f\) is continuous at \(c\)
Sketch the graph of the function. Use a graphing utility to verify your graph. $$ f(x)=\arccos \frac{x}{4} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.