Chapter 1: Problem 71
Sketch the graph of any function \(f\) such that \(\lim _{x \rightarrow 3^{+}} f(x)=1\) and \(\quad \lim _{x \rightarrow 3^{-}} f(x)=0\). Is the function continuous at \(x=3\) ? Explain.
Chapter 1: Problem 71
Sketch the graph of any function \(f\) such that \(\lim _{x \rightarrow 3^{+}} f(x)=1\) and \(\quad \lim _{x \rightarrow 3^{-}} f(x)=0\). Is the function continuous at \(x=3\) ? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \arcsin ^{2} x+\arccos ^{2} x=1 $$
In Exercises 129 and \(130,\) verify each identity (a) \(\operatorname{arccsc} x=\arcsin \frac{1}{x}, \quad|x| \geq 1\) (b) \(\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}, \quad x>0\)
In your own words, describe what is meant by an asymptote of a graph.
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ f(x)=x^{3}+3 x-2 & {[0,1]} \\ \end{array} $$
Writing Use a graphing utility to graph \(f(x)=x, \quad g(x)=\sin x, \quad\) and \(\quad h(x)=\frac{\sin x}{x}\) in the same viewing window. Compare the magnitudes of \(f(x)\) and \(g(x)\) when \(x\) is "close to" \(0 .\) Use the comparison to write \(a\) short paragraph explaining why \(\lim _{x \rightarrow 0} h(x)=1\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.