Chapter 1: Problem 70
Solve the inequality for \(x\). $$ e^{1-x}<6 $$
Chapter 1: Problem 70
Solve the inequality for \(x\). $$ e^{1-x}<6 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine conditions on the constants \(a, b,\) and \(c\) such that the graph of \(f(x)=\frac{a x+b}{c x-a}\) is symmetric about the line \(y=x\).
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If the inverse function of \(f\) exists, then the \(y\) -intercept of \(f\) is an \(x\) -intercept of \(f^{-1}\).
Does every rational function have a vertical asymptote? Explain.
Use a graphing utility to graph the function on the interval \([-4,4] .\) Does the graph of the function appear continuous on this interval? Is the function continuous on [-4,4]\(?\) Write a short paragraph about the importance of examining a function analytically as well as graphically. $$ f(x)=\frac{e^{-x}+1}{e^{x}-1} $$
(a) Prove that if \(\lim _{x \rightarrow c}|f(x)|=0,\) then \(\lim _{x \rightarrow c} f(x)=0\). (Note: This is the converse of Exercise \(74 .)\) (b) Prove that if \(\lim _{x \rightarrow c} f(x)=L,\) then \(\lim _{x \rightarrow c}|f(x)|=|L|\). [Hint: Use the inequality \(\|f(x)|-| L\| \leq|f(x)-L| .]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.