Chapter 1: Problem 67
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{3}-x^{2}+x-2, \quad[0,3], \quad f(c)=4 $$
Chapter 1: Problem 67
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{3}-x^{2}+x-2, \quad[0,3], \quad f(c)=4 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that if \(\lim _{x \rightarrow c} f(x)=0\) and \(|g(x)| \leq M\) for a fixed number \(M\) and all \(x \neq c,\) then \(\lim _{x \rightarrow c} f(x) g(x)=0\).
Write the expression in algebraic form. \(\sec [\arcsin (x-1)]\)
Average Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip. the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour. (a) Verify that \(y=\frac{25 x}{x-25}\) What is the domain? (b) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 30 & 40 & 50 & 60 \\ \hline\(y\) & & & & \\ \hline \end{tabular} Are the values of \(y\) different than you expected? Explain. (c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\) and interpret its meaning.
Write the expression in algebraic form. \(\sin (\arccos x)\)
In Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 0^{+}} \frac{2}{\sin x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.