Chapter 1: Problem 66
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{2}-6 x+8, \quad[0,3], \quad f(c)=0 $$
Chapter 1: Problem 66
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{2}-6 x+8, \quad[0,3], \quad f(c)=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeNumerical and Graphical Analysis Use a graphing utility to complete the table for each function and graph each function to estimate the limit. What is the value of the limit when the power on \(x\) in the denominator is greater than \(3 ?\) $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{x} & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\ \hline \boldsymbol{f}(\boldsymbol{x}) & & & & & & & \\ \hline \end{array} $$ (a) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}\) (b) \(\lim _{x \rightarrow 0^{-}} \frac{x-\sin x}{x^{2}}\) (c) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}\) (d) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}\)
Sketch the graph of the function. Use a graphing utility to verify your graph. $$ f(x)=\arccos \frac{x}{4} $$
Writing Use a graphing utility to graph \(f(x)=x, \quad g(x)=\sin x, \quad\) and \(\quad h(x)=\frac{\sin x}{x}\) in the same viewing window. Compare the magnitudes of \(f(x)\) and \(g(x)\) when \(x\) is "close to" \(0 .\) Use the comparison to write \(a\) short paragraph explaining why \(\lim _{x \rightarrow 0} h(x)=1\).
In Exercises 117-126, write the expression in algebraic form. \(\tan (\arctan x)\)
(a) Let \(f_{1}(x)\) and \(f_{2}(x)\) be continuous on the closed interval \([a,
b]\). If \(f_{1}(a)
What do you think about this solution?
We value your feedback to improve our textbook solutions.