Chapter 1: Problem 59
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ h(x)=-2 e^{-x / 2} \cos 2 x &{\left[0, \frac{\pi}{2}\right]} \\ \end{array} $$
Chapter 1: Problem 59
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ h(x)=-2 e^{-x / 2} \cos 2 x &{\left[0, \frac{\pi}{2}\right]} \\ \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn your own words, explain the Squeeze Theorem.
Find all values of \(c\) such that \(f\) is continuous on \((-\infty, \infty)\). \(f(x)=\left\\{\begin{array}{ll}1-x^{2}, & x \leq c \\ x, & x>c\end{array}\right.\)
Prove that if \(f\) is continuous and has no zeros on \([a, b],\) then either \(f(x)>0\) for all \(x\) in \([a, b]\) or \(f(x)<0\) for all \(x\) in \([a, b]\)
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ f(x)=x^{3}+x-1 $$
Sketch the graph of the function. Use a graphing utility to verify your graph. $$ f(x)=\arctan x+\frac{\pi}{2} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.