Chapter 1: Problem 4
Use the properties of exponents to simplify the expressions. (a) \(\left(\frac{1}{e}\right)^{-2}\) (b) \(\left(\frac{e^{5}}{e^{2}}\right)^{-1}\) (c) \(e^{0}\) (d) \(\frac{1}{e^{-3}}\)
Chapter 1: Problem 4
Use the properties of exponents to simplify the expressions. (a) \(\left(\frac{1}{e}\right)^{-2}\) (b) \(\left(\frac{e^{5}}{e^{2}}\right)^{-1}\) (c) \(e^{0}\) (d) \(\frac{1}{e^{-3}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite a rational function with vertical asymptotes at \(x=6\) and \(x=-2,\) and with a zero at \(x=3\).
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ g(t)=\left(t^{3}+2 t-2\right) \ln \left(t^{2}+4\right) & {[0,1]} \end{array} $$
Numerical and Graphical Analysis Use a graphing utility to complete the table for each function and graph each function to estimate the limit. What is the value of the limit when the power on \(x\) in the denominator is greater than \(3 ?\) $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{x} & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\ \hline \boldsymbol{f}(\boldsymbol{x}) & & & & & & & \\ \hline \end{array} $$ (a) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}\) (b) \(\lim _{x \rightarrow 0^{-}} \frac{x-\sin x}{x^{2}}\) (c) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}\) (d) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}\)
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \lim _{x \rightarrow 0} \frac{|x|}{x}=1 $$
Write the expression in algebraic form. \(\csc \left(\arctan \frac{x}{\sqrt{2}}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.