Chapter 1: Problem 36
Find the limit (if it exists). $$ \lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x} $$
Chapter 1: Problem 36
Find the limit (if it exists). $$ \lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ f(x)=x^{3}+3 x-2 & {[0,1]} \\ \end{array} $$
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ \hline f(x)=x^{2}-4 x+3 & {[2,4]} \\ \end{array} $$
Write the expression in algebraic form. \(\sin (\operatorname{arcsec} x)\)
Find all values of \(c\) such that \(f\) is continuous on \((-\infty, \infty)\). \(f(x)=\left\\{\begin{array}{ll}1-x^{2}, & x \leq c \\ x, & x>c\end{array}\right.\)
Show that the Dirichlet function \(f(x)=\left\\{\begin{array}{ll}0, & \text { if } x \text { is rational } \\\ 1, & \text { if } x \text { is irrational }\end{array}\right.\) is not continuous at any real number.
What do you think about this solution?
We value your feedback to improve our textbook solutions.