Chapter 1: Problem 33
Find the limit (if it exists). $$ \lim _{x \rightarrow 0} \frac{[1 /(3+x)]-(1 / 3)}{x} $$
Chapter 1: Problem 33
Find the limit (if it exists). $$ \lim _{x \rightarrow 0} \frac{[1 /(3+x)]-(1 / 3)}{x} $$
All the tools & learning materials you need for study success - in one app.
Get started for free$$ \begin{aligned} &\text { Prove that if } f \text { and } g \text { are one-to-one functions, then }\\\ &(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x). \end{aligned} $$
In Exercises \(35-38\), use a graphing utility to graph the function and determine the one-sided limit. $$ \begin{array}{l} f(x)=\frac{x^{2}+x+1}{x^{3}-1} \\ \lim _{x \rightarrow 1^{+}} f(x) \end{array} $$
In Exercises 129 and \(130,\) verify each identity (a) \(\operatorname{arccsc} x=\arcsin \frac{1}{x}, \quad|x| \geq 1\) (b) \(\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}, \quad x>0\)
Prove that if a function has an inverse function, then the inverse function is unique.
Numerical and Graphical Analysis Use a graphing utility to complete the table for each function and graph each function to estimate the limit. What is the value of the limit when the power on \(x\) in the denominator is greater than \(3 ?\) $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{x} & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\ \hline \boldsymbol{f}(\boldsymbol{x}) & & & & & & & \\ \hline \end{array} $$ (a) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}\) (b) \(\lim _{x \rightarrow 0^{-}} \frac{x-\sin x}{x^{2}}\) (c) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}\) (d) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.