Chapter 1: Problem 32
In Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 0^{+}} e^{-0.5 x} \sin x $$
Chapter 1: Problem 32
In Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 0^{+}} e^{-0.5 x} \sin x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that if \(\lim _{x \rightarrow c} f(x)=0,\) then \(\lim _{x \rightarrow c}|f(x)|=0\).
Show that the Dirichlet function \(f(x)=\left\\{\begin{array}{ll}0, & \text { if } x \text { is rational } \\\ 1, & \text { if } x \text { is irrational }\end{array}\right.\) is not continuous at any real number.
(a) Let \(f_{1}(x)\) and \(f_{2}(x)\) be continuous on the closed interval \([a,
b]\). If \(f_{1}(a)
Describe the difference between a discontinuity that is removable and one that is nonremovable. In your explanation, give examples of the following. (a) A function with a nonremovable discontinuity at \(x=2\) (b) A function with a removable discontinuity at \(x=-2\) (c) A function that has both of the characteristics described in parts (a) and (b)
Numerical and Graphical Analysis Use a graphing utility to complete the table for each function and graph each function to estimate the limit. What is the value of the limit when the power on \(x\) in the denominator is greater than \(3 ?\) $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{x} & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\ \hline \boldsymbol{f}(\boldsymbol{x}) & & & & & & & \\ \hline \end{array} $$ (a) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}\) (b) \(\lim _{x \rightarrow 0^{-}} \frac{x-\sin x}{x^{2}}\) (c) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}\) (d) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.