Chapter 1: Problem 32
Find the \(x\) -values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable? $$ f(x)=\left\\{\begin{array}{ll} \csc \frac{\pi x}{6}, & |x-3| \leq 2 \\ 2, & |x-3|>2 \end{array}\right. $$
Chapter 1: Problem 32
Find the \(x\) -values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable? $$ f(x)=\left\\{\begin{array}{ll} \csc \frac{\pi x}{6}, & |x-3| \leq 2 \\ 2, & |x-3|>2 \end{array}\right. $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 117-126, write the expression in algebraic form. \(\tan (\arctan x)\)
Boyle's Law For a quantity of gas at a constant temperature, the pressure \(P\) is inversely proportional to the volume \(V\). Find the limit of \(P\) as \(V \rightarrow 0^{+}\).
Prove that if \(\lim _{x \rightarrow c} f(x)\) exists and \(\lim _{x \rightarrow c}[f(x)+g(x)]\) does not exist, then \(\lim _{x \rightarrow c} g(x)\) does not exist.
True or False? In Exercises \(50-53\), determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) has a vertical asymptote at \(x=0,\) then \(f\) is undefined at \(x=0\)
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{2}+x-1, \quad[0,5], \quad f(c)=11 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.