Chapter 1: Problem 31
Sketch the graph of the function and state its domain. $$ f(x)=3 \ln x $$
Chapter 1: Problem 31
Sketch the graph of the function and state its domain. $$ f(x)=3 \ln x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeAverage Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip. the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour. (a) Verify that \(y=\frac{25 x}{x-25}\) What is the domain? (b) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 30 & 40 & 50 & 60 \\ \hline\(y\) & & & & \\ \hline \end{tabular} Are the values of \(y\) different than you expected? Explain. (c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\) and interpret its meaning.
Boyle's Law For a quantity of gas at a constant temperature, the pressure \(P\) is inversely proportional to the volume \(V\). Find the limit of \(P\) as \(V \rightarrow 0^{+}\).
True or False? Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f(x)=g(x)\) for \(x \neq c\) and \(f(c) \neq g(c),\) then either \(f\) or \(g\) is not continuous at \(c\).
(a) Prove that if \(\lim _{x \rightarrow c}|f(x)|=0,\) then \(\lim _{x \rightarrow c} f(x)=0\). (Note: This is the converse of Exercise \(74 .)\) (b) Prove that if \(\lim _{x \rightarrow c} f(x)=L,\) then \(\lim _{x \rightarrow c}|f(x)|=|L|\). [Hint: Use the inequality \(\|f(x)|-| L\| \leq|f(x)-L| .]\)
Find all values of \(c\) such that \(f\) is continuous on \((-\infty, \infty)\). \(f(x)=\left\\{\begin{array}{ll}1-x^{2}, & x \leq c \\ x, & x>c\end{array}\right.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.