Chapter 1: Problem 31
Find the limit (if it exists). $$ \lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x} $$
Chapter 1: Problem 31
Find the limit (if it exists). $$ \lim _{x \rightarrow 0} \frac{\sqrt{x+5}-\sqrt{5}}{x} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 1 / 2} x^{2} \tan \pi x $$
(a) Prove that if \(\lim _{x \rightarrow c}|f(x)|=0,\) then \(\lim _{x \rightarrow c} f(x)=0\). (Note: This is the converse of Exercise \(74 .)\) (b) Prove that if \(\lim _{x \rightarrow c} f(x)=L,\) then \(\lim _{x \rightarrow c}|f(x)|=|L|\). [Hint: Use the inequality \(\|f(x)|-| L\| \leq|f(x)-L| .]\)
Prove that if a function has an inverse function, then the inverse function is unique.
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ f(x)=x^{3}+x-1 $$
Sketch the graph of any function \(f\) such that \(\lim _{x \rightarrow 3^{+}} f(x)=1\) and \(\quad \lim _{x \rightarrow 3^{-}} f(x)=0\). Is the function continuous at \(x=3\) ? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.