Chapter 1: Problem 30
Find the \(x\) -values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable? $$ f(x)=\left\\{\begin{array}{ll} -2 x+3, & x<1 \\ x^{2}, & x \geq 1 \end{array}\right. $$
Chapter 1: Problem 30
Find the \(x\) -values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable? $$ f(x)=\left\\{\begin{array}{ll} -2 x+3, & x<1 \\ x^{2}, & x \geq 1 \end{array}\right. $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ \hline f(x)=x^{2}-4 x+3 & {[2,4]} \\ \end{array} $$
In the context of finding limits, discuss what is meant by two functions that agree at all but one point.
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ f(x)=x^{3}+x-1 $$
Determine conditions on the constants \(a, b,\) and \(c\) such that the graph of \(f(x)=\frac{a x+b}{c x-a}\) is symmetric about the line \(y=x\).
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ h(\theta)=1+\theta-3 \tan \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.