Chapter 1: Problem 28
In Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 3} \frac{x-2}{x^{2}} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 1: Problem 28
In Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 3} \frac{x-2}{x^{2}} $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeRate of Change A 25 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate \(r\) of \(r=\frac{2 x}{\sqrt{625-x^{2}}} \mathrm{ft} / \mathrm{sec}\) where \(x\) is the distance between the ladder base and the house. (a) Find \(r\) when \(x\) is 7 feet. (b) Find \(r\) when \(x\) is 15 feet. (c) Find the limit of \(r\) as \(x \rightarrow 25^{-}\).
If the functions \(f\) and \(g\) are continuous for all real \(x\), is \(f+g\) always continuous for all real \(x ?\) Is \(f / g\) always continuous for all real \(x ?\) If either is not continuous, give an example to verify your conclusion.
(a) Prove that if \(\lim _{x \rightarrow c}|f(x)|=0,\) then \(\lim _{x \rightarrow c} f(x)=0\). (Note: This is the converse of Exercise \(74 .)\) (b) Prove that if \(\lim _{x \rightarrow c} f(x)=L,\) then \(\lim _{x \rightarrow c}|f(x)|=|L|\). [Hint: Use the inequality \(\|f(x)|-| L\| \leq|f(x)-L| .]\)
A dial-direct long distance call between two cities costs \(\$ 1.04\) for the first 2 minutes and \(\$ 0.36\) for each additional minute or fraction thereof. Use the greatest integer function to write the cost \(C\) of a call in terms of time \(t\) (in minutes). Sketch the graph of this function and discuss its continuity.
What is meant by an indeterminate form?
What do you think about this solution?
We value your feedback to improve our textbook solutions.