Chapter 1: Problem 27
Find the \(x\) -values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable? $$ f(x)=\frac{x}{x^{2}+1} $$
Chapter 1: Problem 27
Find the \(x\) -values (if any) at which \(f\) is not continuous. Which of the discontinuities are removable? $$ f(x)=\frac{x}{x^{2}+1} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to graph the given function and the equations \(y=|x|\) and \(y=-|x|\) in the same viewing window. Using the graphs to visually observe the Squeeze Theorem, find \(\lim _{x \rightarrow 0} f(x)\). $$ h(x)=x \cos \frac{1}{x} $$
In your own words, explain the Squeeze Theorem.
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If the inverse function of \(f\) exists, then the \(y\) -intercept of \(f\) is an \(x\) -intercept of \(f^{-1}\).
In Exercises \(35-38\), use a graphing utility to graph the function and determine the one-sided limit. $$ \begin{array}{l} f(x)=\frac{x^{3}-1}{x^{2}+x+1} \\ \lim _{x \rightarrow 1^{-}} f(x) \end{array} $$
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ h(\theta)=1+\theta-3 \tan \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.