Chapter 1: Problem 25
Sketch a graph of the equation. $$ y-2=\frac{3}{2}(x-1) $$
Chapter 1: Problem 25
Sketch a graph of the equation. $$ y-2=\frac{3}{2}(x-1) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 3} \frac{x-2}{x^{2}} $$
Average Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip. the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour. (a) Verify that \(y=\frac{25 x}{x-25}\) What is the domain? (b) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 30 & 40 & 50 & 60 \\ \hline\(y\) & & & & \\ \hline \end{tabular} Are the values of \(y\) different than you expected? Explain. (c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\) and interpret its meaning.
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ f(x)=x^{3}+x-1 $$
True or False? In Exercises \(50-53\), determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(p(x)\) is a polynomial, then the graph of the function given by \(f(x)=\frac{p(x)}{x-1}\) has a vertical asymptote at \(x=1\)
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ g(t)=2 \cos t-3 t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.