Chapter 1: Problem 25
Find the limit of the function (if it exists). Write a simpler function that agrees with the given function at all but one point. Use a graphing utility to confirm your result. $$ \lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1} $$
Chapter 1: Problem 25
Find the limit of the function (if it exists). Write a simpler function that agrees with the given function at all but one point. Use a graphing utility to confirm your result. $$ \lim _{x \rightarrow-1} \frac{x^{2}-1}{x+1} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite a rational function with vertical asymptotes at \(x=6\) and \(x=-2,\) and with a zero at \(x=3\).
(a) Let \(f_{1}(x)\) and \(f_{2}(x)\) be continuous on the closed interval \([a,
b]\). If \(f_{1}(a)
Determine all polynomials \(P(x)\) such that $$ P\left(x^{2}+1\right)=(P(x))^{2}+1 \text { and } P(0)=0 . $$
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ \hline f(x)=x^{2}-4 x+3 & {[2,4]} \\ \end{array} $$
Average Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip. the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour. (a) Verify that \(y=\frac{25 x}{x-25}\) What is the domain? (b) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 30 & 40 & 50 & 60 \\ \hline\(y\) & & & & \\ \hline \end{tabular} Are the values of \(y\) different than you expected? Explain. (c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\) and interpret its meaning.
What do you think about this solution?
We value your feedback to improve our textbook solutions.