Chapter 1: Problem 2
Use a graphing utility to graph the function and visually estimate the limits. \(f(t)=t|t-4|\) (a) \(\lim _{t \rightarrow 4} f(t)\) (b) \(\lim _{t \rightarrow-1} f(t)\)
Chapter 1: Problem 2
Use a graphing utility to graph the function and visually estimate the limits. \(f(t)=t|t-4|\) (a) \(\lim _{t \rightarrow 4} f(t)\) (b) \(\lim _{t \rightarrow-1} f(t)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that for any real number \(y\) there exists \(x\) in \((-\pi / 2, \pi / 2)\) such that \(\tan x=y\)
Prove or disprove: if \(x\) and \(y\) are real numbers with \(y \geq 0\) and \(y(y+1) \leq(x+1)^{2},\) then \(y(y-1) \leq x^{2}\)
$$ \begin{aligned} &\text { Prove that if } f \text { and } g \text { are one-to-one functions, then }\\\ &(f \circ g)^{-1}(x)=\left(g^{-1} \circ f^{-1}\right)(x). \end{aligned} $$
The signum function is defined by \(\operatorname{sgn}(x)=\left\\{\begin{array}{ll}-1, & x<0 \\ 0, & x=0 \\ 1, & x>0\end{array}\right.\) Sketch a graph of \(\operatorname{sgn}(x)\) and find the following (if possible). (a) \(\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)\) (b) \(\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)\) (c) \(\lim _{x \rightarrow 0} \operatorname{sgn}(x)\)
In Exercises \(35-38\), use a graphing utility to graph the function and determine the one-sided limit. $$ \begin{array}{l} f(x)=\frac{x^{3}-1}{x^{2}+x+1} \\ \lim _{x \rightarrow 1^{-}} f(x) \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.