Chapter 1: Problem 14
Sketch the graph of the function. $$ y=3^{x-1} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 1: Problem 14
Sketch the graph of the function. $$ y=3^{x-1} $$
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the position function \(s(t)=-4.9 t^{2}+150\), which gives the height (in meters) of an object that has fallen from a height of 150 meters. The velocity at time \(t=a\) seconds is given by \(\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t}\). Find the velocity of the object when \(t=3\).
Use a graphing utility to graph the given function and the equations \(y=|x|\) and \(y=-|x|\) in the same viewing window. Using the graphs to visually observe the Squeeze Theorem, find \(\lim _{x \rightarrow 0} f(x)\). $$ h(x)=x \cos \frac{1}{x} $$
Explain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ h(x)=-2 e^{-x / 2} \cos 2 x &{\left[0, \frac{\pi}{2}\right]} \\ \end{array} $$
Prove that if \(f\) is continuous and has no zeros on \([a, b],\) then either \(f(x)>0\) for all \(x\) in \([a, b]\) or \(f(x)<0\) for all \(x\) in \([a, b]\)
Average Speed On a trip of \(d\) miles to another city, a truck driver's average speed was \(x\) miles per hour. On the return trip. the average speed was \(y\) miles per hour. The average speed for the round trip was 50 miles per hour. (a) Verify that \(y=\frac{25 x}{x-25}\) What is the domain? (b) Complete the table. \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 30 & 40 & 50 & 60 \\ \hline\(y\) & & & & \\ \hline \end{tabular} Are the values of \(y\) different than you expected? Explain. (c) Find the limit of \(y\) as \(x \rightarrow 25^{+}\) and interpret its meaning.
What do you think about this solution?
We value your feedback to improve our textbook solutions.