Chapter 1: Problem 138
Prove that a function has an inverse function if and only if it is one-to-one
Chapter 1: Problem 138
Prove that a function has an inverse function if and only if it is one-to-one
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the expression in algebraic form. \(\sin (\operatorname{arcsec} x)\)
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{3}-x^{2}+x-2, \quad[0,3], \quad f(c)=4 $$
Show that the function \(f(x)=\left\\{\begin{array}{ll}0, & \text { if } x \text { is rational } \\ k x, & \text { if } x \text { is irrational }\end{array}\right.\) is continuous only at \(x=0\). (Assume that \(k\) is any nonzero real number.)
Let \(f(x)=\left(\sqrt{x+c^{2}}-c\right) / x, c>0 .\) What is the domain of \(f ?\) How can you define \(f\) at \(x=0\) in order for \(f\) to be continuous there?
Prove that \(\arctan x+\arctan y=\arctan \frac{x+y}{1-x y}, x y \neq 1\). Use this formula to show that \(\arctan \frac{1}{2}+\arctan \frac{1}{3}=\frac{\pi}{4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.