Chapter 1: Problem 13
In Exercises \(7-20,\) find the vertical asymptotes (if any) of the function. $$ f(x)=\frac{x}{x^{2}+x-2} $$
Chapter 1: Problem 13
In Exercises \(7-20,\) find the vertical asymptotes (if any) of the function. $$ f(x)=\frac{x}{x^{2}+x-2} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve or disprove: if \(x\) and \(y\) are real numbers with \(y \geq 0\) and \(y(y+1) \leq(x+1)^{2},\) then \(y(y-1) \leq x^{2}\)
True or False? In Exercises \(50-53\), determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(f\) has a vertical asymptote at \(x=0,\) then \(f\) is undefined at \(x=0\)
A dial-direct long distance call between two cities costs \(\$ 1.04\) for the first 2 minutes and \(\$ 0.36\) for each additional minute or fraction thereof. Use the greatest integer function to write the cost \(C\) of a call in terms of time \(t\) (in minutes). Sketch the graph of this function and discuss its continuity.
Use a graphing utility to graph the function on the interval \([-4,4] .\) Does the graph of the function appear continuous on this interval? Is the function continuous on [-4,4]\(?\) Write a short paragraph about the importance of examining a function analytically as well as graphically. $$ f(x)=\frac{e^{-x}+1}{e^{x}-1} $$
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{3}-x^{2}+x-2, \quad[0,3], \quad f(c)=4 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.