Chapter 1: Problem 129
In Exercises 129 and \(130,\) verify each identity (a) \(\operatorname{arccsc} x=\arcsin \frac{1}{x}, \quad|x| \geq 1\) (b) \(\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}, \quad x>0\)
Chapter 1: Problem 129
In Exercises 129 and \(130,\) verify each identity (a) \(\operatorname{arccsc} x=\arcsin \frac{1}{x}, \quad|x| \geq 1\) (b) \(\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}, \quad x>0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ f(x)=x^{3}+3 x-2 & {[0,1]} \\ \end{array} $$
Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c\) guaranteed by the theorem. $$ f(x)=x^{2}-6 x+8, \quad[0,3], \quad f(c)=0 $$
Prove that if \(\lim _{x \rightarrow c} f(x)=0,\) then \(\lim _{x \rightarrow c}|f(x)|=0\).
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If the inverse function of \(f\) exists, then the \(y\) -intercept of \(f\) is an \(x\) -intercept of \(f^{-1}\).
In Exercises \(35-38\), use a graphing utility to graph the function and determine the one-sided limit. $$ \begin{array}{l} f(x)=\frac{x^{3}-1}{x^{2}+x+1} \\ \lim _{x \rightarrow 1^{-}} f(x) \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.