Chapter 1: Problem 118
Write the expression in algebraic form. \(\sin (\arccos x)\)
Chapter 1: Problem 118
Write the expression in algebraic form. \(\sin (\arccos x)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(131-134,\) sketch the graph of the function. Use a graphing utility to verify your graph. $$ f(x)=\arcsin (x-1) $$
Use the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ g(t)=2 \cos t-3 t $$
Rate of Change A 25 -foot ladder is leaning against a house (see figure). If the base of the ladder is pulled away from the house at a rate of 2 feet per second, the top will move down the wall at a rate \(r\) of \(r=\frac{2 x}{\sqrt{625-x^{2}}} \mathrm{ft} / \mathrm{sec}\) where \(x\) is the distance between the ladder base and the house. (a) Find \(r\) when \(x\) is 7 feet. (b) Find \(r\) when \(x\) is 15 feet. (c) Find the limit of \(r\) as \(x \rightarrow 25^{-}\).
Numerical and Graphical Analysis Use a graphing utility to complete the table for each function and graph each function to estimate the limit. What is the value of the limit when the power on \(x\) in the denominator is greater than \(3 ?\) $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{x} & 1 & 0.5 & 0.2 & 0.1 & 0.01 & 0.001 & 0.0001 \\ \hline \boldsymbol{f}(\boldsymbol{x}) & & & & & & & \\ \hline \end{array} $$ (a) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x}\) (b) \(\lim _{x \rightarrow 0^{-}} \frac{x-\sin x}{x^{2}}\) (c) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{3}}\) (d) \(\lim _{x \rightarrow 0^{+}} \frac{x-\sin x}{x^{4}}\)
(a) Let \(f_{1}(x)\) and \(f_{2}(x)\) be continuous on the closed interval \([a,
b]\). If \(f_{1}(a)
What do you think about this solution?
We value your feedback to improve our textbook solutions.