Chapter 1: Problem 11
Find the limit (if it exists). If it does not exist, explain why. $$ \lim _{x \rightarrow \pi} \cot x $$
Chapter 1: Problem 11
Find the limit (if it exists). If it does not exist, explain why. $$ \lim _{x \rightarrow \pi} \cot x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Intermediate Value Theorem and a graphing utility to approximate the zero of the function in the interval [0, 1]. Repeatedly "zoom in" on the graph of the function to approximate the zero accurate to two decimal places. Use the zero or root feature of the graphing utility to approximate the zero accurate to four decimal places. $$ g(t)=2 \cos t-3 t $$
Use a graphing utility to graph the function on the interval \([-4,4] .\) Does the graph of the function appear continuous on this interval? Is the function continuous on [-4,4]\(?\) Write a short paragraph about the importance of examining a function analytically as well as graphically. $$ f(x)=\frac{e^{-x}+1}{e^{x}-1} $$
Prove that if \(\lim _{x \rightarrow c} f(x)=0,\) then \(\lim _{x \rightarrow c}|f(x)|=0\).
After an object falls for \(t\) seconds, the speed \(S\) (in feet per second) of the object is recorded in the table. $$ \begin{array}{|l|c|c|c|c|c|c|c|} \hline t & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\ \hline S & 0 & 48.2 & 53.5 & 55.2 & 55.9 & 56.2 & 56.3 \\ \hline \end{array} $$ (a) Create a line graph of the data. (b) Does there appear to be a limiting speed of the object? If there is a limiting speed, identify a possible cause.
Write the expression in algebraic form. \(\cos (\operatorname{arccot} x)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.