Chapter 1: Problem 1
Evaluate the expressions. (a) \(25^{3 / 2}\) (b) \(81^{1 / 2}\) (c) \(3^{-2}\) (d) \(27^{-1 / 3}\)
Chapter 1: Problem 1
Evaluate the expressions. (a) \(25^{3 / 2}\) (b) \(81^{1 / 2}\) (c) \(3^{-2}\) (d) \(27^{-1 / 3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why the function has a zero in the given interval. $$ \begin{array}{lll} \text { Function } & \text { Interval } \\ g(t)=\left(t^{3}+2 t-2\right) \ln \left(t^{2}+4\right) & {[0,1]} \end{array} $$
Use a graphing utility to graph the given function and the equations \(y=|x|\) and \(y=-|x|\) in the same viewing window. Using the graphs to visually observe the Squeeze Theorem, find \(\lim _{x \rightarrow 0} f(x)\). $$ h(x)=x \cos \frac{1}{x} $$
In Exercises \(25-34,\) find the limit. $$ \lim _{x \rightarrow 0^{+}} \frac{2}{\sin x} $$
Use the position function \(s(t)=-4.9 t^{2}+150\), which gives the height (in meters) of an object that has fallen from a height of 150 meters. The velocity at time \(t=a\) seconds is given by \(\lim _{t \rightarrow a} \frac{s(a)-s(t)}{a-t}\). Find the velocity of the object when \(t=3\).
In Exercises \(35-38\), use a graphing utility to graph the function and determine the one-sided limit. $$ \begin{array}{l} f(x)=\frac{1}{x^{2}-25} \\ \lim _{x \rightarrow 5^{-}} f(x) \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.