Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a random sample of size 1is to be taken from a finite population of size N.

a. How many possible samples are there?

b. Identify the relationship between the possible sample means and the possible observations of the variable under consideration.

c. What is the difference between taking a random sample of size 1from a population and selecting a member at random from the population?

Short Answer

Expert verified

(a) Because each of the population's Nunits might be a random sample, there are Npossible samples.

(b) The sample means are exactly equivalent to the variable under consideration's possible observation.

(c) There is no change because the sample mean of a random sample of size is equal to the sample's single sample observation.

Step by step solution

01

Part (a) Step 1: Given Information 

Given in the question that sample of size 1is to be taken from a finite population of size Nwe have to find the total possible samples are there.

02

Part (a) Step 2: Explanation 

We have to draw a random sample of size 1from the population.

Because each of the Npopulation units can be a random sample, there are Npossible samples.

03

Part (b) Step 1: Given Information 

Given in the question that sample of size 1is to be taken from a finite population of size Nwe have to find the relationship between the possible sample means and the possible observations of the variable under consideration.

04

Part (b) Step 2: Explanation 

Nothing except the sample observation since mean of a single value to that value in a sample of size 1.

therefore, The sample means are exactly equivalent to the variable under consideration's possible observation.

05

Part (c) Step 1: Given Information 

Given in the question that sample of size 1is to be taken from a finite population of size N we have to find the difference between taking a random sample of size 1 from a population and selecting a member at random from the population.

06

Part (c) Step 2: Explanation 

There is no change because the sample mean of a random sample of size is equal to the sample's single sample observation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Although, in general, you cannot know the sampling distribution of the sample mean exactly, by what distribution can you often approximate it?

As reported by the U.S. Census Bureau in Educational Attainment in the United States, the percentage of adults in each state who have completed a bachelor's degree is provided on the Weiss Stats site. Use the technology of you choice to solve the following problems.

Part (a): Obtain the standard deviation of the variable "percentage of adults who have completed a bachelor's degree" for the population of 50 states.

Part (b): Consider simple random samples without replacement from the population of 50 states. Strictly speaking, which is the correct formula for obtaining the standard deviation of the sample mean- Equation (7.1) or Equation (7.2)? Explain your answer.

Part (c): Referring to part (b), obtain R for simple random samples of size 30 by using both formulas. Why does Equation (7.2) provide such a poor estimate of the true value given by Equation (7.1)?

Part (d): Referring to part (b), obtain R for simple random samples of size 2 by using both formulas. Why does Equation (7.2) provide a somewhat reasonable estimate of the true value given by Equation (7.1)?

A statistic is said to be an unbiased estimator of a parameter if the mean of all its possible values equals the parameter; otherwise, it is said to be a biased estimator. An unbiased estimator yields, on average, the correct value of the parameter, whereas a biased estimator does not.

Part (a): Is the sample mean an unbiased estimator of the population mean? Explain your answer.

Part (b): Is the sample median an unbiased estimator of the population mean? Explain your answer.

A variable of a population has mean μ and standard deviationσ. that For a large sample size n, answer the following questions.

a. Identify the distribution ofx.

b. Does your answer to part (a) depend on n being large? Explain your answer.

c. Identify the mean and the standard deviation ofx.

d. Does your answer to part (c) depend on the sample size being large? Why or why not?

America's Riches. Each year, Forbes magazine publishes a list of the richest people in the United States. As of September l6, 2013, the six richest Americans and their wealth (to the neatest billion dollars) are as shown in the following table. Consider these six people a population of interest.

(a) For sample size of 6construct a table similar to table 7.2 on page293 what is the relationship between the only possible sample here and the population?

(b) For a random sample of size 6determine the probability that themean wealth of the two people obtained will be within 3(i.e,3 billion) of the population mean. interpret your result in terms of percentages.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free