Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

NBA Champs Repeat parts (b) and (c) of Exercise 7.41 for samples of size 5. For part (b), use your answer to Exercise 7.15(b).

Short Answer

Expert verified

For the samples of size 5, the mean of the variable x¯isμx¯=78.6.

Step by step solution

01

Step 1. Given Information

We have to determine the sample mean for exercise 7.41 for samples of size 4. The given sample in exercise 7.41 as:

02

Step 2. Find the sample mean 

In the table below, the samples of size 5 and their respective means are obtained:

SampleHeightMean Height (x¯)
B,W,J,C,H83,76,80,74,8083+76+80+74+805=78.6

The variable x¯has the following mean

μx¯=78.61μx¯=78.6

So when the sample size is 5, the variable x¯has a mean μx¯=78.6.

03

Step 3. Find the sample mean using the population mean 

We know that mean of the sample mean is equal to the population mean irrespective of the sample size.

Here, for the given data the population mean is μ=78.6.

So the mean of the sample mean of sample size 5 is

μx¯=μ=78.6

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

7.56 Heights of Starting Players. In Example 7.5, we used the definition of the standard deviation of a variable (Definition 3.12on page 142) to obtain the standard deviation of the heights of the five starting players on a men's basketball team and also the standard deviation of x¯for samples of sizes 1,2,3,4,and 5. The results are summarized in Table 7.6on page 298. Because the sampling is without replacement from a finite population, Equation (7.1)can also be used to obtain role="math" localid="1651069065157" σx.
a. Apply Equation (7.1)to compute role="math" localid="1651069501306" σx¯for samples of sizes 1,2,3,4,and 5. Compare your answers with those in Table 7.6.
b. Use the simpler formula, Equation (7.2), to compute role="math" localid="1651069072557" σxfor samples of sizes 1,2,3,4,and 5. Compare your answers with those in Table7.6.Why does Equation (7.2) generally yield such poor approximations to the true values?
c. What percentages of the population size are samples of sizes 1,2,3.4,and 5?

Population data: 2,3,5,7,8

Part (a): Find the mean, μ, of the variable.

Part (b): For each of the possible sample sizes, construct a table similar to Table 7.2on the page localid="1652592045497" 293and draw a dotplot for the sampling for the sampling distribution of the sample mean similar to Fig 7.1on page 293.

Part (c): Construct a graph similar to Fig 7.3and interpret your results.

Part (d): For each of the possible sample sizes, find the probability that the sample mean will equal the population mean.

Part (e): For each of the possible sample sizes, find the probability that the sampling error made in estimating the population mean by the sample mean will be 0.5or less, that is, that the absolute value of the difference between the sample mean and the population mean is at most0.5.

According to the central limit theorem, for a relatively large sample size, the variable x~is approximately normally distributed.

a. What rule of thumb is used for deciding whether the sample size is relatively large?

b. Roughly speaking, what property of the distribution of the variable under consideration determines how large the sample size must be for a normal distribution to provide an adequate approximation to the distribution of x~ ?

The following graph shows the curve for a normally distributed variable. Superimposed are the curves for the sampling distributions of the sample mean for two different sample sizes.

a. Explain why all three curves are centered at the same place.

b. Which curve corresponds to the larger sample size? Explain your answer.

c. Why is the spread of each curve different?

d. Which of the two sampling-distribution curves corresponds to the sample size that will tend to produce less sampling error? Explain your answer.

c. Why are the two sampling-distribution curves normal curves?

Menopause in Mexico. In the article "Age at Menopause in Puebla. Mexico" (Human Biology, Vol. 75, No, 2, Pp. 205-206), authors L. Sievert and S. Hautaniemi compared the age of menopause for different populations. Menopause, the last menstrual period, is a universal phenomenon among females. According to the article, the mean age of menopause, surgical or natural, in Puebla, Mexico is 44.8 years with a standard deviation of 5.87 years. Letx¯ denote the mean age of menopause for a sample of females in Puebla, Mexico.
a. For samples of size 40, find the mean and standard deviation of x¯. Interpret your results in words.
b. Repeat part (a) with n=120.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free