Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

7.45 NBA Champs. Repeat parts (b) and (c) of Exercise 7.41for samples of size 5. For part (b). use your answer to Exercise 7.15(b).

Short Answer

Expert verified

The mean height (μx¯)for samples of size 5is 78.6.

Step by step solution

01

Given information

To determine the sample size of 5. The sample from exercise 7.41is:

02

Explanation

For samples of size 5, calculate the mean height (μx¯).
As a result, the size 5samples and their means are obtained as given in the table below:

Sample size
Height
Mean(x)
B,W,J,C,H
83,76,80,74,80
83+76+80+74+805=78.6

As a result, the number of possible samples (N)of size 5 is one.
The mean of all possible sample means is calculated as follows for samples of size 5:
μx¯=x¯iN

=78.61

=78.6

As a result, the mean height (μx¯)for size 5samples is 78.6.

03

Explanation

Calculate the mean height μx¯.
The average height of five players in the population is 78.6 inches.
The population mean is equal to the mean of the sample mean.
That is to state,
μx¯=μ
=78.6
Asa result, the mean height ( (μx¯) for samples of size 5 is 78.6.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A variable of a population has mean μ and standard deviationσ. that For a large sample size n, answer the following questions.

a. Identify the distribution ofx.

b. Does your answer to part (a) depend on n being large? Explain your answer.

c. Identify the mean and the standard deviation ofx.

d. Does your answer to part (c) depend on the sample size being large? Why or why not?

Worker Fatigue. A study by M. Chen et al. titled "Heat Stress Evaluation and Worker Fatigue in a Steel Plant (American Industrial Hygiene Association, Vol. 64. Pp. 352-359) assessed fatigue in steelplant workers due to heat stress. If the mean post-work heart rate for casting workers equals the normal resting heart rate of 72beats per minute (bpm), find the probability that a random sample of 29 casting workers will have a mean post-work heart rate exceeding 78.3bpm Assume that the population standard deviation of post-work heart rates for casting workers is 11.2 bpm. State any assumptions that you are making in solving this problem.

As reported by the U.S. Census Bureau in Educational Attainment in the United States, the percentage of adults in each state who have completed a bachelor's degree is provided on the Weiss Stats site. Use the technology of you choice to solve the following problems.

Part (a): Obtain the standard deviation of the variable "percentage of adults who have completed a bachelor's degree" for the population of 50 states.

Part (b): Consider simple random samples without replacement from the population of 50 states. Strictly speaking, which is the correct formula for obtaining the standard deviation of the sample mean- Equation (7.1) or Equation (7.2)? Explain your answer.

Part (c): Referring to part (b), obtain R for simple random samples of size 30 by using both formulas. Why does Equation (7.2) provide such a poor estimate of the true value given by Equation (7.1)?

Part (d): Referring to part (b), obtain R for simple random samples of size 2 by using both formulas. Why does Equation (7.2) provide a somewhat reasonable estimate of the true value given by Equation (7.1)?

According to the central limit theorem, for a relatively large sample size, the variable x~is approximately normally distributed.

a. What rule of thumb is used for deciding whether the sample size is relatively large?

b. Roughly speaking, what property of the distribution of the variable under consideration determines how large the sample size must be for a normal distribution to provide an adequate approximation to the distribution of x~ ?

Ethanol Railroad Tariffs. An ethanol railroad tariff is a fee charged for shipments of ethanol on public railroads. The Agricultural Marketing Service publishes tariff rates for railroad-car shipments of ethanol in the Biofuel Transportation Database. Assuming that the standard deviation of such tariff rates is \(1,150, determine the probability that the mean tariff rate of 500randomly selected railroad car shipments of ethanol will be within \)100of the mean tariff rate of all railroad-car shipments of ethanol. Interpret your answer in terms of sampling error.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free