Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A and B are events such that P(A)=0.2,P(B)=0.6,andP(A&B)=0.1. FindP(AorB).

Short Answer

Expert verified

PAorB=0.7

Step by step solution

01

Step 1. Given information.

The given statement is:

A and B are events such that P(A)=0.2,P(B)=0.6,andP(A&B)=0.1.

02

Step 2. Find P(A or B).

If there are two events Aand Bthen the probability of either A, B, or both occurring is P(A or B), and the likelihood of both A and Boccurring is P(A & B).

Therefore, the probability of events A and B are mutually exclusive will become:

PAorB=PA+PB-PA&B=0.2+0.6-0.1=0.7

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 5.16-5.26, express your probability answers as a decimal rounded to three places.

Nobel Laureates. From Wikipedia and the article "Which Country Has the Best Brains?" from BBC News Magazine, we obtained a frequency distribution of the number of Nobel Prize winners. by country.

Suppose that a recipient of a Nobel Prize is selected at random. Find the probability that the Nobel Laureate is from

(a) Sweden.

(b) either France or Germany.

(c) any country other than the United States.

Explain what is wrong with the following argument: When two balanced dice are rolled, the sum of the dice can be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12, giving 11 possibilities. Therefore the probability is 111 that the sum is 12.

Suppose that a simple random sample is taken from a finite population in which each member is classified as either having or not having a specified attribute. Fill in the following blanks.

(a) If sampling is with replacement, the probability distribution of the number of members sampled that have the specified attribute is a distribution.

(b) If sampling is without replacement, the probability distribution of the number of members sampled that have the specified attribute is a distribution.

(c) If sampling is without replacement and the sample size does not exceed % of the population size, the probability distribution of the number of members sampled that have the specified attribute can be approximated by a distribution.

Give two examples of Bernoulli trials other than those presented in the text.

Determine0!,3!,4!,and7!.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free