Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Drinking Habits. In a nationwide survey, conducted by Pulse Opinion Research, LLC for Rasmussen Reports, 1000 American adults were asked, among other things, whether they drink alcoholic beverages at least once a week; 38% said "yes." Determine and interpret a 95% confidence interval for the proportion, p, of all American adults who drink alcoholic beverages at least once a week.

Short Answer

Expert verified

The confidence interval for the proportion of all-American adults who drink alcoholic beverages at least once a week is 0.350 to 0.410, according to the 95% confidence interval.

Step by step solution

01

Given Information

When xand n-xare both 5the one-proportion z-interval technique is appropriate if the number of proportions is larger than one.

It has a 95%confidence interval, which means that α=0.05.

02

Explanation

To find that

zα/2=z0.05/2

=1.96

The confidence interval for pis form

p'-zα/2p'1-p'ntop'+zα/2p'1-p'ni.e.0.38-1.9600.38(1-0.38)1000to0.38-1.9600.38(1-0.38)1000i.e.0.38±1.960(0.0153)

0.38±0.0299

(0.350,0.410)

The 95%confidence interval for the percentage of all adult Americans who drink alcoholic beverages at least once a week is (0.350,0.410).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Is College Worth It? In the New York Times article "College Graduates Fare Well in Jobs Market, Even Through Recession," C. Rampell noted that college graduates have suffered through the recession and lackluster recovery with remarkable resilience. Of a random sample of 1020 college graduates, 35 were unemployed; and of a random sample of 1008 high-school graduates (no college), 69 were unemployed.

a. At the 1 T significance level, do the data provide sufficient evidence to conclude that college graduates have a lower unemployment rate than high-school graduates?

b. Find and interpret a98% confidence interval for the difference in unemployment rates of college and high-school graduates.

In this Exercise, we have given the number of successes and the sample size for a simple random sample from a population. In each case,

a. use the one-proportion plus-four z-interval procedure to find the required confidence interval.

b. compare your result with the corresponding confidence interval found in Exercise 11.25-11.30, if finding such a confidence interval was appropriate.

role="math" localid="1651325715651" x=8,n=40,95%level

Margin of error=0.01

Confidence level=90%

Educated guess=0.9

(a) Obtain a sample size that will ensure a margin of error of at most the one specified (provided of course that the observed value of the sample proportion is further from 0.5that of the educated guess.

(b). Compare your answer to the corresponding one and explain the reason for the difference, if any.

Suppose that you are using independent samples to compare two population proportions.

Fill in the blanks.

a. The mean of all possible differences between the two sample proportions equals the

b. For large samples, the possible differences between the two sample proportions have approximately a distribution.

Vasectomies and Prostate Cancer. Refer to Exercise 11.106 and determine and interpret a 98% confidence interval for the difference between the prostate cancer rates of men who have had a vasectomy and those who have not.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free