Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Dementia is the loss of the in actual and social abilities severe enough to interfere with judging behavior and daily functioning. Alzheimer's disease is the most common type of dementia. In the article "Living with Early Onsite dementia: Exploring the Experience and Developing Evidence Guidelines for Practice", P Harris and J Keady explored the experiment struggles of people diagnosed with dementia and their familiar simple random sample \(21\) people with early-onset dementia the following data on age at diagnosis in years.

At the \(1%\) significance level, do the data provide sufficient evidence to conclude that the mean age at diagnosis of all people with early onset dementia is less than \(55\) years old? Assume that the population is standard deviation is \(6.8\) years.

Short Answer

Expert verified

The null hypothesis is not rejected and it is reasonable to believe that the mean age at diagnosis of all people with early dementia is less than \(55\) year old.

Step by step solution

01

Step 1. Given information

The standard deviation is \(68\), the mean is \(52.5\), the sample size is \(21\) and the level of significance is \(0.01\).

02

Step 2. Calculation

The hypothesis are,

\(H_{0}:\mu =55\)

\(H_{0}:\mu <55\)

The test statistics is,

\(z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\)

Substitute the given values in above equation.

\(z=\frac{52.5-55}{\frac{6.8}{\sqrt{21}}}\)

\(=-1.68\)

The critical value for level of significance of \(0.01\) is \(-2.33\)

The graph is shown below.

Since, \(z>z_{0.025}\)

Thus, the null hypothesis is not rejected and it is reasonable to believe that the mean age at diagnosis of all people with early dementia is less than \(55\) year old.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Refer to Exercise 9.15. Explain what each of the following would mean.

(a) Type I error

(b) Type II error

(c) Correct decision

Now suppose that the results of carrying out the hypothesis test lead to nonrejection of the null hypothesis. Classify that conclusion by error type or as a correct decision if in fact the mean cadmium level in Boletus Pinicolamushrooms.

(d) equals the safety limit of 0.5ppm.

(e) exceeds the safety limit of0.5ppm.

The normal probability curve and stem-and-leaf diagram of the data are shown in figure; ฯƒis known.

Perform Hypothesis test for mean of the population from which data is obtained and decide whether to use z-test, t-test or neither. Explain your answer.

Purse Snatching. The Federal Bureau of Investigation (FBI) compiles information on robbery and property crimes by type and selected characteristic and publishes its findings in Uniform Crime Reports. According to that document, the mean value lost to purse snatching was 468in 2012. For last year, 12randomly selected purse-snatching offenses yielded the following values lost, to the nearest dollar.

Use a t-test to decide, at the5%significance level, whether last year's mean value lost to purse snatching has decreased from the 2012mean. The mean and standard deviation of the data are 455.0and 86.8, respectively.

The daily charges, in dollars, for a sample of 15 hotels and motels operating in South Carolina are provided on the WeissStats site. The data were found in the report South Carolina Statistical Abstract, sponsored by the South Carolina Budget and Control Board.

Part (a): Use the one-mean z-test to decide, at the 5% significance level, whether the data provide sufficient evidence to conclude that the mean daily charge for hotels and motels operating in South Carolina is less than \(75. Assume a population standard deviation of \)22.40.

Part (b): Obtain a normal probability plot, boxplot, histogram and stem-and-leaf diagram of the data.

Part (c): Remove the outliers (if any) from the data and then repeat part (a).

Part (d): Comment on the advisability of using thez-test here.

Serving Time. According to the Bureau of Crime Statistics and Research of Australia, as reported on Lawlink, the mean length of imprisonment for motor-vehicle theft offenders in Australia is 16.7 months. One hundred randomly selected motor-vehicle-theft offenders in Sydney, Australia, had a mean length of imprisonment of 17.8 months. At the5% significance level, do the data provide sufficient evidence to conclude that the mean length of imprisonment for motor-vehicle theft offenders in Sydney differs from the national mean in Australia? Assume that the population standard deviation of the lengths of imprisonment for motor-vehicle-theft offenders in Sydney is 6.0 months.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free