Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have been provided a sample mean, sample size, and population standard deviation. In the given case, use the one-mean z-test to perform the required hypothesis test at the 5% significance level.

x¯=23,n=15,σ=4,H0:μ=22,Ha:μ>22

Short Answer

Expert verified

The value of z is 0.97, critical value is 1.645,P=0.002and do not reject H0.

Step by step solution

01

Step 1. Given information.

Consider the given question,

x¯=23,n=15,σ=4,H0:μ=22,Ha:μ>22

02

Step 2. Consider the test hypothesis.

Consider the given hypothesis,

σ is the population mean.

The test hypothesis,

H0:μ=22VsHa:μ>22

Therefore, the test is right tailed test.

And the level of significance isα=0.05.

03

Step 3. Use the test statistics.

We want to find the hypothesis test about the mean μ,

z=x¯-μ0σn=23-22415=0.97

Therefore, this is right tailed test with α=0.05, the critical value is given below,

za=z0.05=1.645

The critical region is z>z0.05. Here, z=0.97<z0.05=1.645

Hence, we reject H0at 5% level of significance as the value of zdoes not fall in the rejection region.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In each of Exercises 9.41-9.46 ,determine the critical values for a one-mean z-test. For each exercise, draw a graph that illustrates your answer

A two-tailed test withα=0.05

According to the Bureau of Crime Statistics and Research of Australia, as reported on Lawlink, the mean length of imprisonment for motor-vehicle-theft offenders in Australia is 16.7 months. One hundred randomly selected motor-vehicle-theft of-fenders in Sydney, Australia, had a mean length of imprisonment of 17.8 months. At the 5% significance level, do the data provide sufficient evidence to conclude that the mean length of imprisonment for motor-vehicle-theft offenders in Sydney differs from the national mean in Australia? Assume that the population standard deviation of the lengths of imprisonment for motor-vehicle-theft offenders in Sydney is6months.

Ankle Brachial Index. The ankle brachial index (ABI) compares the blood pressure of a patient's arm to the blood pressure of the patient's leg. The ABI can be an indicator of different diseases, including arterial diseases. A healthy (or normal) ABI is 0.9 or greater. In a study by M. McDermott et al. titled "Sex Differences in Peripheral Arterial Disease: Leg Symptoms and Physical Functioning" (Journal of the American Geriatrics Society, Vol. 51, No. 2, Pp. 222-228), the researchers obtained the ABI of 187 women with peripheral arterial disease. The results were a mean ABI of 0.64 with a standard deviation of 0.15 At the 1 % significance level, do the data provide sufficient evidence to conclude that, on average, women with peripheral arterial disease have an unhealthy ABI?

Left-Tailed Hypothesis Tests and CIs. In Exercise 8.146 on page 345 , we introduced one-sided one-mean t-intervals. The following relationship holds between hypothesis tests and confidence intervals for one-mean t-procedures: For a left-tailed hypothesis test at the significance level α, the null hypothesis H0:μ=μ0 will be rejected in favor of the alternative hypothesis Ho:μ<μ0 if and only if μ0 is greater than or equal to the (1−α)-level upper confidence bounif for μ. In each case, illustrate the preceding relationship by obtaininy the appropriate upper confidence bound and comparing the result to the conclusion of the hypothesis test in the specified exercise.
a. Exercise9.117
b. Exercise9.118

Serving Time. According to the Bureau of Crime Statistics and Research of Australia, as reported on Lawlink, the mean length of imprisonment for motor-vehicle theft offenders in Australia is 16.7 months. One hundred randomly selected motor-vehicle-theft offenders in Sydney, Australia, had a mean length of imprisonment of 17.8 months. At the5% significance level, do the data provide sufficient evidence to conclude that the mean length of imprisonment for motor-vehicle theft offenders in Sydney differs from the national mean in Australia? Assume that the population standard deviation of the lengths of imprisonment for motor-vehicle-theft offenders in Sydney is 6.0 months.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free