Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

We have been provided a sample mean, sample size, and population standard deviation. In the given case, use the one-mean z-test to perform the required hypothesis test at the 5% significance level.

x¯=24,n=15,σ=4,H0:μ=22,Ha:μ>22

Short Answer

Expert verified

The value of z is 1.94, critical value is 1.645,P=0.026and reject H0.

Step by step solution

01

Step 1. Given information.

Consider the given question,

x¯=24,n=15,σ=4,H0:μ=22,Ha:μ>22

02

Step 2. Consider the test hypothesis.

Consider the given hypothesis,

μis the population mean.

The test hypothesis is given below,

H0:μ=22VsHa:μ>22

Therefore, the test is right tailed test.

And the level of significance isα=0.05.

03

Step 3. Use the test statistics.

We want to find the hypothesis test about the mean μ,

z=x¯-μ0σn=24-22415=1.94

Therefore, this is right tailed test with α=0.05, the critical value is given below,

role="math" localid="1651164260948" za=z0.05=1.645

The rejection region is z>z0.05.

Here, z=1.94>z0.05=1.645

Hence, we reject H0at 5% level of significance as the value of the test satisfice falls in the rejection region.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Refer to Problem 24.The following table provides last year's cheese consumption, in pounds, for 35 randomly selected Americans.

Part (a): At the 10%significance level, do the data provide sufficient evidence to conclude that last year's mean cheese consumption for all Americans has increased over the 2010 mean? Assume that σ=6.9lb. Use a z-test.

Part (b): Given the conclusion in part (a), if an error has been made, what type must it be? Explain your answer.

9.96 Left-Tailed Hypothesis Tests and Cls. In Exercise 8.105 on page 335, we introduced one-sided one-mean z-intervals. The following relationship holds between hypothesis tests and confidence intervals for one-mean z-procedures: For a left-tailed hypothesis test at the significance level α, the null hypothesis H0:μ=μ0will be rejected in favor of the alternative hypothesis Ha:μ<μ0if and only if μ0is greater than or equal to the (1-α)-level upper confidence bound for μ. In each case, illustrate the preceding relationship by obtaining the appropriate upper confidence bound and comparing the result to the conclusion of the hypothesis test in the specified exercise.
a. Exercise 9.85
b. Exercise 9.86

How Far People Drive. In 2011, the average car in the United States was driven 13.5 thousand miles, as reported by the Federal Highway Administration in Highway Statistics. On the WeissStats site, we provide last year's distance driven, in thousands of miles, by each of 500 randomly selected cars. Use the technology of your choice to do the following.

a. Obtain a normal probability plot and histogram of the data.

b. Based on your results from part (a), can you reasonably apply the one-mean t-test to the data? Explain your reasoning.

c. At the 5 % significance level, do the data provide sufficient evidence to conclude that the mean distance driven last year differs from that in 2011?

Purse Snatching. The Federal Bureau of Investigation (FBI) compiles information on robbery and property crimes by type and selected characteristic and publishes its findings in Uniform Crime Reports. According to that document, the mean value lost to purse snatching was 468in 2012. For last year, 12randomly selected purse-snatching offenses yielded the following values lost, to the nearest dollar.

Use a t-test to decide, at the5%significance level, whether last year's mean value lost to purse snatching has decreased from the 2012mean. The mean and standard deviation of the data are 455.0and 86.8, respectively.

Dementia is the loss of the in actual and social abilities severe enough to interfere with judging behavior and daily functioning. Alzheimer's disease is the most common type of dementia. In the article "Living with Early Onsite dementia: Exploring the Experience and Developing Evidence Guidelines for Practice", P Harris and J Keady explored the experiment struggles of people diagnosed with dementia and their familiar simple random sample \(21\) people with early-onset dementia the following data on age at diagnosis in years.

At the \(1%\) significance level, do the data provide sufficient evidence to conclude that the mean age at diagnosis of all people with early onset dementia is less than \(55\) years old? Assume that the population is standard deviation is \(6.8\) years.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free