Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Define theP- value of the hypothesis test.

Short Answer

Expert verified

The \(P-\)value is the probability that the data from the sample is inconsistent with the null hypothesis.

Step by step solution

01

Step 1. Given information

Define the \(P-\)value of a hypothesis test.

02

Step 2. Calculation

The definition of the \(P-\)value is the probability that the data from the sample is inconsistent with the null hypothesis.

Thus, \(P-\)value is the probability that the data from the sample is inconsistent with the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

9.89 Job Gains and Losses. In the article "Business Employment Dynamics: New Data on Gross Job Gains and Losses" (Monthly Labor Review, Vol. 127. Issue 4. pp. 29-42). J. Spletzer et al. examined gross job gains and losses as a percentage of the average of previous and current employment figures. A simple random sample of 20 quarters provided the net percentage gains (losses are negative gains) for jobs as presented on the WeissStats site. Use the technology of your choice to do the following.
a. Decide whether, on average, the net percentage gain for jobs exceeds 0.2. Assume a population standard deviation of 0.42. Apply the one-mean z-test with a 5% significance level.
b. Obtain a normal probability plot, boxplot, histogram, and stem-and-leaf diagram of the data.
c. Remove the outliers (if any) from the data and then repeat part (a).
d. Comment on the advisability of using the z-test here.

In the given exercise, we have provided a sample mean, sample size, and population standard. In each case, use the one-mean z-test to perform the required hypothesis test at the 5% significance level.

x=20,n=24,σ=4,H0:μ=22,Ha:μ22

The normal probability curve and stem-to-leaf diagram of the data are shown in figure; σis unknown.

Perform Hypothesis test for mean of the population from which data is obtained and decide whether to use z-test, t-test or neither. Explain your answer.

Refer to Exercise 9.19. Explain what each of the following would mean.

(a) Type I error.

(b) Type II error.

(c) Correct decision.

Now suppose that the results of carrying out the hypothesis test lead to the rejection of the null hypothesis. Classify that conclusion by error type or as a correct decision if in fact the mean length of imprisonment for motor-vehicle-theft offenders in Sydney.

(d) equals the national mean of 16.7 months.

(e) differs from the national mean of 16.7 months.

The normal probability curve and stem-to-leaf diagram of the data are shown in figure; σis unknown.

Perform Hypothesis test for mean of the population from which data is obtained and decide whether to use z-test, t-test or neither. Explain your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free